等比数列是什么?
等比数列,又名几何数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G.P.表示。这个常数叫做等比数列的公比,常用字母
q
left( qne0 right)
表示,等比数列
a_{n}=a_{1}cdot q^{n-1}
,
a_{1}ne0
。[1]例如数列首项
a_{1}=2
,公比
q=3
,则第2、3项为6、18…则第n项为
a_{n}=2times 3^{n-1}
等比数列的性质总结最全?
①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N?)m+n=p+q=2k(m,n,p,q,k∈N?),则am?an=ap?aq=a2kam?an=ap?aq=ak2。
②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an?bn}{an?bn},{anbn}{anbn}仍然是等比数列;
③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,?an,an+k,an+2k,an+3k,?为等比数列,公比为qkqk;
④q≠1q≠1的等比数列的前2n2n项,S偶=a2?[1?(q2)n]1?q2S偶=a2?[1?(q2)n]1?q2,S奇=a1?[1?(q2)n]1?q2S奇=a1?[1?(q2)n]1?q2,则S偶S奇=qS偶S奇=q;
⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1?qn?1an=a1?qn?1;
2等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数。
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
等比数列通项公式的n能取0吗
n不能取0。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
前n项和公式是什么等比数列
等比数列前n项和公式是Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q),等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。而数列求和对按照一定规律排列的数进行求和,求Sn实质上是求{an}的通项公式,应注意对其含义的理解,常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。
等比数列的前n项和公式是什么
等比数列的前n项和公式是Sn=a1(1-q^n)/(1-q)。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。注:q=1时,an为常数列。
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
等比数列q怎么求
求等比数列q公式:q=G/a。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
等比数列的 公比用q表示吗
等比数列的公比用q表示,前提是q≠0。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。等比数列a1≠0。其中{an}中的每一项均不为0。
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
等比数列前n项积怎么求
求等比数列前n项积:Sn=n(n+1)/2。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)×存期。
3个数字成等比数列什么意思
3个数字成等比数列,即这3个数是按照等比关系排列而形成了等比数列,后一项与前一项的比值是相同的(不为零)数。
1、数列:按一定次序排列的一列数称为数列。
2、等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
等比数列性质公式总结
等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。
等比数列是几年级学的
等比数列是高中一年级学的。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。
等比数列的几何意义
等比数列可看作指数函数所对应坐标系中的图象,定义域为N*,中项即是前项、后项的几何平均数。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。